

Comparison Analysis on Rust and C
Through the Lens of GNU grep Implementation

Angela Yang, CS 131 Winter 2023 Discussion 1C

Abstract
Rust is a fairly new and extremely versatile language, de-
veloped with the intention of creating a language with the
speed and low level capability of C/C++, without the error-
prone memory management system. I will be going over
five arenas and analyzing how Rust performs in each of
them. These arenas are reliability, performance, ease of use,
flexibility, and security. Each of these are vital when evalu-
ating programming languages as they determine how the
language will likely be used. After assessing Rust's fea-
tures, I will introduce grep as a case study for the paral-
lelizability of Rust. I chose grep and parallelizing as the
topics of analysis as grep is a widely used unix tool, and
multithreading involves all of the five arenas. Both of these
have widespread implications, and thus are the motivation
of this analysis.

1. Rust Assessment
1.1. Reliability
Reliability is arguably, the most important aspect of a pro-
gramming language. Software must be reliable above all
else. If a language is easy, fast, secure, and flexible, yet
doesn't produce correct results, this will render it useless.
As such a vital field, reliability has several determining
factors: reliable memory management and reliable error
checking for common errors, such as type errors, scope
errors, etc. As stated above in the abstract, memory man-
agement was a huge priority in the development of Rust, as
C/C++ are valued for their performance yet disliked for
their very unrestricted memory management, which causes
the majority of the unreliability in C/C++ written software.
Rust's solution to this, was an ownership and borrow-
checker system. In layman terms, the principle of this relied
on the idea that each value belonged to only one owner.
Ownership could change only when assignment occured
and in this way as soon as a value was assigned to some-
thing else, the old one was automatically unuseable and
freed. This eliminated need for use side memory manage-
ment. [1, Ch 4.1-4.2]

Secondly, is Rust's frontloading error checking to compile
time. Types were static so could be checked during compile
time. While C/C++ are both statically typed--so this isn't a
comparison to those languages--many other languages that
hoped to achieve this reliability utilized runtime checking
that cost the user performance as well as made errors harder
to find as programs now needed to have cases that would
hit the bugs in order to ever find them. Rust had compile

time checking to eliminate such invisible bugs, and thus
increased reliability. [1, Ch 3.1-3.2] In conclusion for this
arena, Rust is extremely reliable.

1.2. Performance
Rust is also incredibly fast, due to the aforementioned
compile time frontloading. Though compilation may take
longer, runtime was incredibly fast as no checks had to be
done: the program could just be run.

Rust is also faster thanks to the unique ownership memory
management method. This made garbage collection obso-
lete and thus there was no overhead from creating more
objects from the garbage collector. [1, Ch 4.1-4.2]

Rust is also modeled after C/C++ and thus can be very low
level. This makes for faster compilation as it is closer to
machine language. In conclusion for this arena, Rust is very
fast.

1.3. Ease of Use
Though ease of use is subjective and varies from developer
to developer, in general the learning curve for Rust comes
from the ownership model yet again. This is because it is
quite unique and harder to learn than other memory man-
agement systems. For beginner developers, this may feel
unncessary as they don't understand the costs of not having
this system. For experienced developers coming from other
languages, knowledge of previous programming language
may make it harder to learn Rust as it is so vastly different
in this aspect.

Rust also supports a lot of customizability which makes it
difficult to begin for those who are new to the language,
and may actually get in the way, as there's less of a conven-
tional method. In conclusion for this arena, Rust is not very
easy to learn.

1.4. Flexibility & Generality
As mentioned in the previous section, Rust allows for much
customizability. It allows for the option of high level or low
level programming, so Rust can be customized to the pro-
ject or software being written [1, Ch 19.1]. It can also sup-
port different programming paradigms, such as procedural,
object oriented, functional, and reactive [1, Ch. 6.3, 13].
This allows for many different styles of programming, as
well as ability to utilize Rust for many different kinds of
software. In conclusion for this arena, Rust is very flexible
and generalizable, and allows many customizations.

1.5. Security
Security is somewhat difficult to analyze, as it refers to the
limitation of access to data structures, so that clients or oth-
er code can't mess with other parts of the codebase. This
can be realized in a few different ways.
Firstly, the ownership model once again lends itself to safer
access to objects, eliminating access to objects that don't
exist anymore. Objects will only be used or accessed by
one owner or borrower at any given time. This is good for
memory management in general but also for helping pre-
vent buffer overflows and double free errors, as all of these
are predicted during compile time and Rust can predict
such vulnerabilities and refuse to run. Memory not belong-
ing to the current program would never be accessed in this
way. This also has implications in concurrency which al-
lows threads to access memory only when it borrows it
from the owner, or owns it. This effectively creates the
effect of locks, and prevents collision. [1, Ch 4.1-4.2]
A few other features exist to prevent integer overflow and
null pointer dereferences, which are all checked at compile
time. Rust ensures predictable behavior in its program in
this way.

2. GNU grep
1.1. Brief Overview of grep
grep is a command line tool that is used to conditionally
select and return lines from files that satisfy a given regular
expression. grep allows for flexibility by having flag op-
tions that allow for customizability in how grep conducts
its search. GNU grep is written in C so it runs fairly quick-
ly. GNU grep is fast because it avoids looking at every in-
put byte. Instead, it looks first for the final letter of the tar-
get string, and skips forward based on the Boyer-Moore
algorithm. However, even with these optimizations, grep is
still single threaded. If these benefits were available but
grep was also multithreaded, this would significantly im-
prove performance.
1.2. Concurrency in grep
grep is used many times a day, and scans oftentimes, very
large files, so performance and speed is very important.
However, reliability and correctness is also highly im-
portant as in any highly used software. grep is parallelize-
able, as the file can be divided into chunks that may be
searched in parallel and then results can be merged at the
end. Other implementations of grep have utilized this, but
the mainly used GNU grep is single threaded regardless.
We will now discuss the possibility of Rust-implemented
parallelizable grep.

3. Rust and C comparison
Rust’s fearless concurrency allows multiple threads to ac-
cess data safely, without data races. This is because it uti-

lizes ownership and borrowing restrictions to act like locks,
ensuring that threads can’t access the same piece of
memory at the same time as only one can own it at a time.
[2] Rust is able to utilize the same algorithm to avoid look-
ing at each byte, and because it is also mostly compile time
checking, with no garbage collection, the speed is compa-
rable to C. A version of grep has been written in Rust
called ripgrep, which utilizes the Chase-Lev work-stealing
queue for distributing work. It is incredibly fast but lacks
mobility as it's not POSIX compliant and in this way, GNU
grep is the better option. However, in an analysis on paral-
lelizability, reliability, security, and ease of access, it be-
comes claer that Rust is the better option for writing grep.
[2]

References

1. Klabnik, S, Nichols, C. The Rust Programming Lan-
guage. No Starch Press. 2022;Ch0-21. https://doc.rust-
lang.org/book/title-page.html

2. Gallant, A. ripgrep is faster than {grep, ag, git grep, ucg,
pt, sift}. Andrew Gallant's Blog. 2016.
https://blog.burntsushi.net/ripgrep/

3. Haertel, M. [Email] why GNU grep is fast. freebsd-
current Mailing List. 2010.
https://lists.freebsd.org/pipermail/freebsd-current/2010-
August/019310.html

ChatLog

Me: can you elaborate on the part about supporting multi-
ple programming paradigms

Chat:

Sure! Rust is a language that supports multiple program-
ming paradigms, meaning that it allows developers to use
different approaches to solving programming problems.
Here are some examples of the programming paradigms
that Rust supports:

1. Procedural programming: This is the most basic
programming paradigm, where the program is or-
ganized around a sequence of statements that mod-
ify the program state. Rust provides support for
procedural programming with its functions and
control flow constructs like loops and condition-
als.

2. Object-oriented programming (OOP): OOP is a
programming paradigm that is based on the con-
cept of objects, which encapsulate data and behav-
ior. Rust supports OOP by providing structs,
which allow developers to define custom data
types with associated methods.

3. Functional programming (FP): FP is a program-
ming paradigm that emphasizes immutability, pure
functions, and higher-order functions. Rust pro-
vides support for FP with features like closures, it-
erators, and the Option and Result enums, which
are used for error handling and returning values
from functions.

4. Reactive programming: Reactive programming is
a programming paradigm that is based on the con-
cept of streams, which represent a sequence of
events over time. Rust provides support for reac-
tive programming with libraries like Tokio, which
allows developers to write asynchronous, event-
driven programs.

By supporting multiple programming paradigms, Rust al-
lows developers to choose the programming approach that
best fits their use case. This flexibility can be especially
helpful for developers who are coming from other lan-
guages or who are working on complex projects that re-
quire a mix of different programming approaches.

